dbg/ttb

The Erlang text based tracer and trace tool builder

Mazen Harake
mazen.harake@erlang-solutions.com

Index

What we will cover ...

dbg Introduction and Basics
Match Specifications

dbg Extended

ttb Introduction and Basics
Where to go from here ...

opwn e

G

dbg Introduction and Basics

Getting started

dbg Introduction and Basics e
>

dbg is ...

* A textbased tracer
* Suitable for low level tracing in the shell
i the trace BIFs (no “trace-compile”

dbg Introduction and Basics e

P

First of all:
We only trace processes!

Single Multiple New Existing

dbg Introduction and Basics e

'

Each trace has flags for what behaviour to trace on, E.g ...

received message sent and received message

O—©

sent message

dbg Introduction and Basics e

P

A trace emits trace messages,
one process receives these messages

)

dbg Introduction and Basics e
4

When tracing calls, a pattern table is created to know
which module, function and arity to react on

io:format/2

io:format/3 /lj
foo:bar/0

baz:boo/4

dbg Introduction and Basics e
>

A typical way to use dbg

Start the tracer process
Specify which processes to trace and how (using flags)
e patterns and match specificatio

dbg Introduction and Basics e

Start the tracer process

SpecifyWhiehfprocesses to trace and how (using flags)
Specifyftracerpatterns and match specifications
Observe

.m.w.b.wv

Stop process

dbg:tracer ()

Starts a process that will recieve all the trace messages
Only one can be active on local node
one will receive trace messages in a cluster

> dbg:tracer ().
{ok,<0.33.0>}

dbg Introduction and Basics e

Start the tracer process

Specify which processes to trace and how (using flags)
3 atterns and match specifications
4. race
5

6

s
process

dbg:p(Item, FlagList)

Defines a trace for a process (p for process?)
em iS a term that identifies one or more processes
ist of options to enable in t

dbg Introduction and Basics e

Start the tracer process
’ Specify which processes to trace and how (using flags)

Specifyftracerpatterns and match specifications

(o) B O I S VS]
(=g
=
Q
(@)
o

dbg:p (Item, FlagList)
em can be one of the following:

Or existing

dbg Introduction and Basics w

1. Start the tracer process
* Specify which processes to trace and how (using flags)
3. Specifyfti@cerpatterns and match specifications
4 Run/Observe trace
5
6

process

dbg:p (Item, FlagList)

agList is a list of zero or more of:
s — Sending messages
— Receiving messages

[receiving messages

dbg Introduction and Basics e

Start the tracer process

Specify which processes to trace and how (using flags)
Specifyftracerpatterns and match specifications
Run/0O ve trace

Clear

Stop process

.m.w.b.wv

dbg:p (Item, FlagList)

agList can also include what ever erlang:trace/2 accepts:
running — Process scheduling
e collection—When GC occurs

dbg Introduction and Basics e

Start the tracer process

ich processes to trace and how (using flags)
3 atterns and match specifications
4. race
5

6

s
process

dbg:p(Item, FlagList)

returns {ok, [{matched, Node, N}]}
ws how many processes N that matched on each
dd nodes later.

dbg Introduction and Basics e

Start the tracer process
’ Specify which processes to trace and how (using flags)

3. Specifyftracerpatterns and match specifications
4. Run/0k e trace

5. Clear s

6. Stop process

dbg:p(Item, FlagList)

> dbg:p(self (), [m, timestamp]).

{ok, [{matched, nonode@nohost, 1}]}

> dbg:p(self (), [garbage collection]).
{ok, [{matched, nonode@nohost,1}]}
> 1s ().

> dbg:p(all, [c, timestamp]).
{ok, [{matched, nonode@nohost, 26}]}

dbg Introduction and Basics e

Start the tracer process
; Specif ich processes to trace and how (using flags)

3 atterns and match specifications
4. race
5
6

S

process

A word of advice ...

Know what you are tracing, think before you trace!

> dbg:p(all, [m]).

dbg Introduction and Basics e

Start the tracer process

SpecifyWhiehfprocesses to trace and how (using flags)
atterns and match specifications

race

S

3.
4.
5.
6.

process

g:tp({Module, Function, Arity}, MatchSpec)

Defines a trace pattern (tp) for global calls
r local calls use dbg: tpl
en used together with the

dbg Introduction and Basics e

: Start the tracer process

* SpecifyWhiehfprocesses to trace and how (using flags)
3. Specify trace patterns and match specifications

4. Run/Observe trace
5 Cleart
6 Stop

S

process

g:tp ({Module, Function, Arity}, MatchSpec)

Module has to be specified
Wildcards are {M,F,' '} and {M,' ',' '}
other combination allowed e.g. {* ',F, ' '}

dbg Introduction and Basics e

Start the tracer process

Specift IERfprocesses to trace and how (using flags)
atterns and match specifications

race

s

SR (OB

process

g:tp({Module, Function, Arity}, MatchSpec)

Will be described later. Use [] for now.

dbg Introduction and Basics e

Start the tracer process
? i IERfprocesses to trace and how (using flags)

atterns and match specifications
race
S

SR)

process

g:tp({Module, Function, Arity}, MatchSpec)

returns {ok, [{matched, Node, N}]}
ws how many functions n that matched on each
dd nodes later.

dbg Introduction and Basics e

: Start the tracer process
* SpecifyWhiehfprocesses to trace and how (using flags)
3. Specifyfti@cerpatterns and match specifications
4. Run/Observe trace
5
6

Stop process

dbg:ctp ({Module, Function, Arity})
dbg:p (Item, clear)

First command clears the patterns but not the traces
d command stops the traces (using the clear
as whe '

Exercises

= WNEE

G

Compile the file traceme.erl and load the beam
Run: {P1, P2} = traceme:init/0
Enable tracing you think will answer the questions

Run traceme:runit ({P1, P2}) and then
traceme:stopit ({P1, P2})

Clear trace and repeat for each in the following list

Using tracing ...

e
Match Specifications

What and how

Match Specifications e

A Match Specification (MS) is ...

* A set of Erlang terms describing a small "program"

* The purpose is to, using this "program", to match input data
* dbg call traces
objects

~ Match Specifications e

Matching is done in three steps

= [{MatchHead, MatchConditions, MatchBody}]

1. Bind variables (MatchHead)
ck against conditions (MatchConditi

Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchCc
3. Perform actions (MatchBody)

{MatchHead, MatchConditions, MatchBody}

* A list of values/terms and/or variables; the length of this list
must be equal to the arity of the function being matched on
* Matches (binds) variables in the form of 'sn

*N =1 ... 100000000 (Doubtyou will ne

~ Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

atchHead, MatchConditions, MatchBody}

Examples

MatchHead

Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

{MatchHead, MatchConditions, MatchBody}

* A list of terms to where each one is a matching condition

* Evaluates to either true or false

» Uses previously bound variables only, no new can be bound
* Only guard functions allowed: is _integer, hd, length, '
tions are specified as a tuple E.g. {hd,

~ Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

atchHead, MatchConditions, MatchBody}

Examples

ments MatchHead Condition

[{is inte

Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

{MatchHead, MatchConditions, MatchBody}

* A list of terms where each is an action to perform

* Only when MatchHead and MatchConditions succeeded
* Actions include
ending messages

Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

{MatchHead, MatchConditions, MatchBody}

Description

sage , term()} Appends term() to the trace message

eturn_trace} Generates a trace message when the call returns
from the function (breaks tail-recursion)

Enables a trace for the

~ Match Specifications e
Bind variables (MatchHead)

1.
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

Match Specifications Examples

> dbg:tracer().

{0k, <0.430.0>}

250> dbg:p(self (), [c, arity, timestamp]).

{ok, [{matched, nonode@nohost, 1}]}

251> dbg:tp(traceme, foo, [{['$1'], [{'>", '$1',
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

252> traceme:foo(1l). %% Not greater than 5

ok
253> traceme:foo(6). %% Greater than 5

ok
(<0.297.0>) call traceme:foo/1 (Timestamp: {1289,134618,807870})

Match Specifications e

>L Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

Match Specifications Examples

> dbg:p(all,clear), dbg:ctp().

{ok, [{matched, nonode@nohost, 8830}]}

> dbg:p(self (), [c]).

{ok, [{matched, nonode@nohost,1}1]}

> dbg:tp (traceme, bar, [{['$1l', '$2'], [{'andalso', {'>=', '$1', 5}, {'not',
{'is_list', 'S$2'}}}1, [1}1).

{ok, [{matched, nonode@nohost, 1}, {saved,2}]}

> traceme:bar (6, {hej}). %% First argument > 4 and second argument not a list
(<0.297.0>) call traceme:bar (6, {hej})

ok
> traceme:bar (6, []). %% Second argument is a list

ok

Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

Match Specifications Examples

> dbg:p(all,clear), dbg:ctp().

{ok, [{matched, nonode@nohost, 8830}]}

> dbg:p(self (), [c, timestamp]).

{ok, [{matched, nonode@nohost, 1}]}

> dbg:tp(traceme, baz, [{[' ', ' ', '$7000'], [{'==', {'element',6 1, '$7000'}, ok}],
[{message, { 'element',2,'$7000'}}, {return trace}l}]).

> {ok, [{matched, nonode@nohost, 1}, {saved, 3}]}

> traceme:baz (1,2,3). %% Not tuple but doesn't crash

ok

> traceme:baz (1,2, {ok, msg}). %% Tuple and first element is ok
(<0.297.0>) call traceme:baz(l,2,{ok,msg}) (msg) (Timestamp: {1289,135992,580490})
(<0.297.0>) returned from traceme:baz/3 -> ok (Timestamp: {1289,136400,564081})

>

Match Specifications e

1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

dbg: funZ2ms (LiteralFun) -> MatchSpec

* LiteralFun is a fun which is replaced by a Match
Specification at compile time

* LiteralFun must be declared in the call to fun2ms
e fun translate to different parts of the MS

Match Specifications el

1. Bind variables (MatchHead)
Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

[

Examples

> dbg:funZms (fun([A, B]) when is_list(A) andalso is_integer (B) -> message(caller()) end).
['$1','82"]
[{'andalso',6{is_list,'$1'},{is_integer,'$2'}}],
[{message, {caller}}]}]

> dbg:funZms (fun(_) -> return_trace() end) .
[({'_",[], [{return_trace}]

> dbg fun2ms fun {:}Qizfi
['$1','$1!

Do not affect tracing

> dbg fun2ms(fun when A > B -> enable trace (garbage collection) end).

['$1','82"
[{|>|,|$1|,|$2|}],

[{enable_trace,garbage collection}]}]

Exercises

= WNEE

Compile the file traceme.erl and load the beam
Run: {P1, P2} = traceme:init/0
Enable tracing you think will answer the questions

Run traceme:randit ({P1, P2}) and then
traceme:stopit ({P1, P2})

Clear trace and repeat for each in the following list

Using tracing ...

/2 and ping/1 functions take to

Sl
dbg Extended

Handling trace messages manually; tracing to a file or port and
tracing in a multinode environment

’dbg Extended w

Distributed tracing
cluster can be traced with output going to one node

one@host two@host

’dbg Extended w

Distributed tracing
Start a tracer

dbg:tracer ()

one@host two@host

 dbg Extended e

Distributed tracing
Add nodes to the list of nodes to start traces on

dbg:n (Node)

one@host two@host

 dbg Extended e

Distributed tracing
When a trace starts it will start on all known nodes

dbg:p(Item, Flags)

one@host two@host

 dbg Extended e

Distributed tracing; Example

'~ net kernel:start([foo, shortnames]). '~ net kernel:start([bar, shortnames]).
{ok,<0.33.0>} {ok,<0.33.0>}

(foolPasha)”> dbg:tracer (). (barPasha)”> traceme:foo(node()).
{ok,<0.40.0>} ok

(foolPasha) 2> dbg:n(bar@Pasha) . (bar@Pasha) 3>

{ok,bar@Pasha}

(foolbasha) 4> dbg:p(all, c).

{ok, [{matched,bar@Pasha, 34},

{matched, foo@Pasha, 35}]}
(foolPasha) > dbg:tp(traceme, foo, []).
{ok, [{matched,bar@Pasha,l},

{matched, foo@Pasha,1}]}
(fool@Pasha) 6>

(<6566.31.0>) call traceme:foo(bar@Pasha)
(foolPasha) 6> traceme:foo(node()) .

ok

(<0.31.0>) call traceme:foo (foo@Pasha)
(fool@Pasha) 7>

ﬂbg Extended

Remember this?

roduction and Basics

A trace emits trace messages,
one process receives these messages

—

dbg Extended e

Handling trace messages manually Suppose to
L/ represent a fun

r (process, {HandlerFun, Initi

dbg Extended e

Handling trace messages manually; Example

> dbg:tracer (process, {fun(Trace, N) -> io:format ("TRACE (#~p): ~p~n", [N, Trace]), N+1
end, 0}).
{ok,<0.485.0>}
s > dbg:p(self (), [c]).
{ok, [{matched, nonode@nohost,1}]}
> dbg:tp(traceme, foo, [1]).
{ok, [{matched, nonode@nohost, 1}]}
> traceme:foo (1) .
TRACE (#0): {trace,<0.297.0>,call, {traceme,foo,[1]}}
ok
> traceme:foo (2).
TRACE (#1): {trace,<0.297.0>,call, {traceme, foo,[2]}}
Ok
> dbg:p(all,clear).
{ok, [{matched, nonode@nohost,28}]}
> dbg:p(self (), [c, timestamp]).
{ok, [{matched, nonode@nohost, 1}]}
> traceme:foo (10).
ok
TRACE (#2): {trace_ts,<0.297.0>,call, {traceme, foo,"\n"},{1289,139850,193370}}
>

’dbg Extended w

Trace messages; examples

{trace, Pid, 'receive', Msg}

{trace, Pid, send, Msg, To}

dbg Extended e

Trace messages; with flag t imestamp:

ts, Pid, call, {M, F, A}, {MegaSec, Sec, MicroSec}}

with message in the match specification:
race, Pid, call, {M, F, Args}, Message}

dbg Continued e

Trace output to a port

ol

dbg:tracer (port, PortGenerator)

dbg Continued e

Trace output to a port: Socket

t (1ip, PortNumber| {PortNumber, QueueSize

ort for a client to connect

dbg Continued e

Trace output to a port: Socket

client (ip, PortNumber|{Hostname, PortNumber})

ects to a port on a hostname
ave the same formats as tracing in

~ dbg Continued e

Trace output to a port: Socket; example

> dbg:tracer (port, > dbg:trace client (ip, {"localhost"™, 9922}).

dbg:trace port(ip, 9922)). <0.53.0>
> (<0.33.0>) call traceme:foo (nonode@nohost)

{ok,<0.80.0>}
(<0.33.0>) call traceme:foo("Hello!'")

> dbg:p(all, c).

{ok, [{matched, nonode@nohost, 26}]}
> dbg:tp(traceme, foo, [1]).

{ok, [{matched, nonode@nohost, 1}]}
> traceme:foo (node()) .

ok

> traceme:foo ("Hello!").

ok

dbg Continued e

Trace output to a port: File

e port(file, Filename|WrapFileSpec)

o dump traces t

~ dbg Continued e

Trace output to a port: File

race client(file|follow file, Filename)

the file Filename and prints the tracemessages
i 1e is used then the file will be

 dbg Continued e

Trace output to a port

race client(, , {HandlerFun, InitialState})
erFun = fun (TraceMsg, State) -> NewState

concept as when using tracer/2
is sent if the ip port is too conge

Exercises e

Using tracing ...

number of erlang nodes and trace something you previously
ut from all nodes simultaneously
ustom handler to print the messages you get differently from

ing timestamp and/or message in your match speC| '
ler that measures the avara

- =
ttb Introduction

and Basics

Getting started again

ttb Introduction and Basics e

What we know so far ...

 Start a trace with different flags (calls, messages etc)
e Match Specifications to refine call traces
nect several nodes into a trace

e from a client

ttb Introduction and Basics e

Building distributed system tracing
Some examples:

ce a specific action of the system (E.g. a session/messa
de system sampling (E.g. How many refill their
than £5 per day/hour/secon

ttb Introduction and Basics e

ttb basics

e Starts one file port tracer on several nodes at the same time
tarts one or more traces on these nodes

hen tracing is stopped the files are aggregated on the node
arted the tracing

at function is used to format each entry which can t
itten to a file (or whatever we want E.g. wri

ttb Introduction and Basics e

ttb usage

1. Start a tracer on a set of nodes
2. Start a trace (and trace patterns if tracing calls)
3. Stop the trace (automatic aggregation)

ttb Introduction and Basics e

Start a tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

Format the output

BRI AT’ =

ttb:tracer (Nodes, Options)

he first parameter Nodes is a list of nodes where the tracer will
rted
S {ok, NNodes} where NNodes is a list of nodes where th
ers were started

is a list of key-value tuples. The co

ttb Introduction and Basics

ttb:tracer (Nodes, Options)

(foo@Pasha) 1> ttb:tracer ([foo@Pasha, bar@Pasha]l, [{file,"MyTraceFile"}]).
{ok, [bar@Pasha, foo@Pasha]}

ttb Introduction and Basics e

Starta tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

E t the output

= SO ISy

ttb:p (Procs, Flags)

ame functionality as dbg:p/2

is a list of process identifiers (or a single item)
istered | atom() | pid() | all | new |

ed processes are identified by each nod

ttb Introduction and Basics e

Start/a tracer on a set of nodes

ttbh:tpltpl|ctplctpl/2, 3,4

me functionality as the dbg functions
return value

ttb Introduction and Basics e

ttb:p (Procs, Flags)

(foo@Pasha) 2> ttb:p(all, [c]).
{ok, [{all, [{matched,bar@Pasha, 36}, {matched, fooR@Pasha,37}]}]}

(foo@Pasha) 3> ttb:tp(traceme, foo, []).
{ok, [{matched, bar@Pasha, 1}, {matched, foo@Pasha,1}]}

(foo@Pasha) 4> traceme:foo (node()) .
ok

(bar@Pasha) 1> traceme:foo (node()) .
ok

ttb Introduction and Basics e

Starta tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

E t the output

= Oy

ttb:stop (Options)

tops the tracing
ions is a list of one of two items; fetch and format

implies fetch

ieves the files from the remote no

ttb Introduction and Basics e

ttb:stop (Options)

(foo@Pasha) 5> ttb:stop([format]) .
Stored logs in e:/Desktop/EUC-=Tutorial/ttb-test/ttb upload-YYYYMMDD-HHNNSS
<5700.37.0>, {erlang, apply,2},bar@Pas call traceme:foo (bar@Pasha)
({<0.37.0>, {erlang,apRly,2},foo@Pasha}) call traceme:foo (foo@Pasha)
stopped

ttb Introduction and Basics e

Starta tracer on a set of nodes
Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

1.
2.
3.
4,

ttb:format (File, Options)

ormats a file, list of files or a directory
ptions are given this print the trace to stdout
can be

andard io|Filename} — Specifi

ttb Introduction and Basics e

Starta tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

Format the output

2 99 ISEay

ormat (..., [{handler, {HandlerFun, ...}}])

fun of arity 4: fun (Fd, Trace, TraceInfo, State)

he file descriptor to the file the out option specified or
rd io

The trace message according to given fla

ttb Introduction and Basics

Start/a tracer on a set of nodes

HandlerFun

ok

fun (Fd,
io:
io:
io:
io:

(foolPasha) 6> ttb:format ("ttb upload-20101113-202517",
{HandlerFun,

ttb:format (File, Options)

Trace, TraceInfo,) ->

format (Fd, "= TracelInfo:",[]1),
format (Fd, "~1000p~n", [TraceInfo]),
format (Fd, "= Trace ", 00,
format (Fd, "~1000p~n~n", [Trace])

[{out, "mytrace.log"}, {handler,

ok}}]).

ttb Introduction and Basics e

Starta tracer on a set of nodes
Start a trace (and trace patterns if tracing calls)
trace (automatic aggregation)

ttb:format (File, Options)

= TracelInfo:[{flags, [{[all], [calll}]l}, {file, ["./bar@Pasha-MyTraceFile"]}, {node, [bar@Pashal}]
= Trace :{trace, {<5700.37.0>, {erlang,apply,2},bar@Pasha},call, {traceme, foo, [bar@Pashal]}}

= TracelInfo:[{flags, [{[all], [calll}]l},{file, ["./bar@Pasha-MyTraceFile"]}, {node, [bar@Pashal}]
= Trace :end of trace

= TracelInfo:[{flags, [{[all], [calll}]l},{file, ["./foo@Pasha-MyTraceFile"]}, {node, [fool@Pashal}]
= Trace :{trace, {<0.37.0>, {erlang, apply,2},foo@Pasha},call, {traceme, foo, [foolPasha]}}

= TracelInfo:[{flags, [{[all], [calll}]l},{file, ["./foo@Pasha-MyTraceFile"]}, {node, [foolPashal}]
= Trace :end of trace

ttb Introduction and Basics e

Start/a tracer on a set of nodes
Start a trace (and trace patterns if tracing calls)

ttb:write trace info(Key, Info)

dds a {Key, Info} tuple tothe TraceInfoelement
| to "save" enviornment information with the trac
lled on the node that started the t

Exercises e

Using the trace tool builder ...

e trace tool builder to run traces you previously used dbg for
a module with a simple interface that takes a module, function and
aces that for a given number of seconds and then turns the trace
ats the results to a file

Hardcore:

Sl
Where to go from

here ...

What | didn't include

Vhere to go from here ...

Look into ...

