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Getting started
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dbg is ...

* A textbased tracer
* Suitable for low level tracing in the shell
i the trace BIFs (no “trace-compile”
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P

First of all:
We only trace processes!

Single Multiple New Existing
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'

Each trace has flags for what behaviour to trace on, E.g ...

received message sent and received message

O—©

sent message
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P

A trace emits trace messages,
one process receives these messages

)
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When tracing calls, a pattern table is created to know
which module, function and arity to react on

io:format/2

io:format/3 /lj
foo:bar/0

baz:boo/4
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A typical way to use dbg

Start the tracer process
Specify which processes to trace and how (using flags)
e patterns and match specificatio
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Start the tracer process

SpecifyWhiehfprocesses to trace and how (using flags)
Specifyftracerpatterns and match specifications
Observe

.m.w.b.wv

Stop process

dbg:tracer ()

Starts a process that will recieve all the trace messages
Only one can be active on local node
one will receive trace messages in a cluster

> dbg:tracer ().
{ok,<0.33.0>}
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Start the tracer process

Specify which processes to trace and how (using flags)
3 atterns and match specifications
4. race
5

6

s
process

dbg:p(Item, FlagList)

Defines a trace for a process (p for process?)
em iS a term that identifies one or more processes
ist of options to enable in t
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Start the tracer process
’ Specify which processes to trace and how (using flags)

Specifyftracerpatterns and match specifications

(o) B O I S VS ]
(=g
=
Q
(@)
o

dbg:p (Item, FlagList)
em can be one of the following:

Or existing
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1. Start the tracer process
* Specify which processes to trace and how (using flags)
3. Specifyfti@cerpatterns and match specifications
4 Run/Observe trace
5
6

process

dbg:p (Item, FlagList)

agList is a list of zero or more of:
s — Sending messages
— Receiving messages

[ receiving messages
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Start the tracer process

Specify which processes to trace and how (using flags)
Specifyftracerpatterns and match specifications
Run/0O ve trace

Clear

Stop process

.m.w.b.wv

dbg:p (Item, FlagList)

agList can also include what ever erlang:trace/2 accepts:
running — Process scheduling
e collection—When GC occurs
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Start the tracer process

ich processes to trace and how (using flags)
3 atterns and match specifications
4. race
5

6

s
process

dbg:p(Item, FlagList)

returns {ok, [{matched, Node, N}]}
ws how many processes N that matched on each
dd nodes later.



dbg Introduction and Basics e

Start the tracer process
’ Specify which processes to trace and how (using flags)

3. Specifyftracerpatterns and match specifications
4. Run/0k e trace

5. Clear s

6. Stop process

dbg:p(Item, FlagList)

> dbg:p(self (), [m, timestamp]).

{ok, [ {matched, nonode@nohost, 1}]}

> dbg:p(self (), [garbage collection]).
{ok, [ {matched, nonode@nohost,1}]}
> 1s ().

> dbg:p(all, [c, timestamp]).
{ok, [{matched, nonode@nohost, 26}]}
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Start the tracer process
; Specif ich processes to trace and how (using flags)

3 atterns and match specifications
4. race
5
6

S

process

A word of advice ...

Know what you are tracing, think before you trace!

> dbg:p(all, [m]).




dbg Introduction and Basics e

Start the tracer process

SpecifyWhiehfprocesses to trace and how (using flags)
atterns and match specifications

race

S

3.
4.
5.
6.

process

g:tp({Module, Function, Arity}, MatchSpec)

Defines a trace pattern (tp) for global calls
r local calls use dbg: tpl
en used together with the
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: Start the tracer process

* SpecifyWhiehfprocesses to trace and how (using flags)
3. Specify trace patterns and match specifications

4. Run/Observe trace
5 Cleart
6 Stop

S

process

g:tp ({Module, Function, Arity}, MatchSpec)

Module has to be specified
Wildcards are {M,F,' '} and {M,' ',' '}
other combination allowed e.g. {* ',F, ' '}
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Start the tracer process

Specift IERfprocesses to trace and how (using flags)
atterns and match specifications

race

s

SR (OB

process

g:tp({Module, Function, Arity}, MatchSpec)

Will be described later. Use [] for now.
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Start the tracer process
? i IERfprocesses to trace and how (using flags)

atterns and match specifications
race
S

SR )

process

g:tp({Module, Function, Arity}, MatchSpec)

returns {ok, [{matched, Node, N}]}
ws how many functions n that matched on each
dd nodes later.
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: Start the tracer process
* SpecifyWhiehfprocesses to trace and how (using flags)
3. Specifyfti@cerpatterns and match specifications
4. Run/Observe trace
5
6

Stop process

dbg:ctp ({Module, Function, Arity})
dbg:p (Item, clear)

First command clears the patterns but not the traces
d command stops the traces (using the clear
as whe '
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Compile the file traceme.erl and load the beam
Run: {P1, P2} = traceme:init/0
Enable tracing you think will answer the questions

Run traceme:runit ({P1, P2}) and then
traceme:stopit ({P1, P2})

Clear trace and repeat for each in the following list

Using tracing ...



e
Match Specifications

What and how
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A Match Specification (MS) is ...

* A set of Erlang terms describing a small "program"

* The purpose is to, using this "program", to match input data
* dbg call traces
objects
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Matching is done in three steps

= [{MatchHead, MatchConditions, MatchBody} ]

1. Bind variables (MatchHead)
ck against conditions (MatchConditi
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1. Bind variables (MatchHead)
2. Check against conditions (MatchCc
3. Perform actions (MatchBody)

{MatchHead, MatchConditions, MatchBody}

* A list of values/terms and/or variables; the length of this list
must be equal to the arity of the function being matched on
* Matches (binds) variables in the form of 'sn

*N =1 ... 100000000 (Doubtyou will ne
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1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

atchHead, MatchConditions, MatchBody}

Examples

MatchHead
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1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

{MatchHead, MatchConditions, MatchBody}

* A list of terms to where each one is a matching condition

* Evaluates to either true or false

» Uses previously bound variables only, no new can be bound
* Only guard functions allowed: is _integer, hd, length, '
tions are specified as a tuple E.g. {hd,
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1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

atchHead, MatchConditions, MatchBody}

Examples

ments MatchHead Condition

[{is inte
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1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

{MatchHead, MatchConditions, MatchBody}

* A list of terms where each is an action to perform

* Only when MatchHead and MatchConditions succeeded
* Actions include
ending messages
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1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

{MatchHead, MatchConditions, MatchBody}

Description

sage , term()} Appends term() to the trace message

eturn_trace} Generates a trace message when the call returns
from the function (breaks tail-recursion)

Enables a trace for the
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Bind variables (MatchHead)

1.
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

Match Specifications Examples

> dbg:tracer().

{0k, <0.430.0>}

250> dbg:p(self (), [c, arity, timestamp]).

{ok, [ {matched, nonode@nohost, 1}]}

251> dbg:tp(traceme, foo, [{['$1'], [{'>", '$1',
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

252> traceme:foo(1l). %% Not greater than 5

ok
253> traceme:foo(6). %% Greater than 5

ok
(<0.297.0>) call traceme:foo/1 (Timestamp: {1289,134618,807870})
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>L Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

Match Specifications Examples

> dbg:p(all,clear), dbg:ctp().

{ok, [ {matched, nonode@nohost, 8830} ]}

> dbg:p(self (), [c]).

{ok, [ {matched, nonode@nohost,1}1]}

> dbg:tp (traceme, bar, [{['$1l', '$2'], [{'andalso', {'>=', '$1', 5}, {'not',
{'is_list', 'S$2'}}}1, [1}1).

{ok, [ {matched, nonode@nohost, 1}, {saved,2}]}

> traceme:bar (6, {hej}). %% First argument > 4 and second argument not a list
(<0.297.0>) call traceme:bar (6, {hej})

ok
> traceme:bar (6, []). %% Second argument is a list

ok
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1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

Match Specifications Examples

> dbg:p(all,clear), dbg:ctp().

{ok, [ {matched, nonode@nohost, 8830} ]}

> dbg:p(self (), [c, timestamp]).

{ok, [ {matched, nonode@nohost, 1}]}

> dbg:tp(traceme, baz, [{[' ', ' ', '$7000'], [{'==', {'element',6 1, '$7000'}, ok}],
[ {message, { 'element',2,'$7000'}}, {return trace}l}]).

> {ok, [{matched, nonode@nohost, 1}, {saved, 3}]}

> traceme:baz (1,2,3). %% Not tuple but doesn't crash

ok

> traceme:baz (1,2, {ok, msg}). %% Tuple and first element is ok
(<0.297.0>) call traceme:baz(l,2,{ok,msg}) (msg) (Timestamp: {1289,135992,580490})
(<0.297.0>) returned from traceme:baz/3 -> ok (Timestamp: {1289,136400,564081})

>
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1. Bind variables (MatchHead)
2. Check against conditions (MatchConditions)
3. Perform actions (MatchBody)

dbg: funZ2ms (LiteralFun) -> MatchSpec

* LiteralFun is a fun which is replaced by a Match
Specification at compile time

* LiteralFun must be declared in the call to fun2ms
e fun translate to different parts of the MS
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1. Bind variables (MatchHead)
Check against conditions (MatchConditions)
3. Perform actions (MatechBody)

[

Examples

> dbg:funZms (fun([A, B]) when is_list(A) andalso is_integer (B) -> message(caller()) end).
['$1','82"]
[{'andalso',6{is_list,'$1'},{is_integer,'$2'}}],
[ {message, {caller}}]}]

> dbg:funZms (fun(_) -> return_trace() end) .
[({'_",[], [{return_trace}]

> dbg fun2ms fun {:}Qizfi
['$1','$1!

Do not affect tracing

> dbg fun2ms(fun when A > B -> enable trace (garbage collection) end).

['$1','82"
[{|>|,|$1|,|$2|}],

[{enable_trace,garbage collection}]}]
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Compile the file traceme.erl and load the beam
Run: {P1, P2} = traceme:init/0
Enable tracing you think will answer the questions

Run traceme:randit ({P1, P2}) and then
traceme:stopit ({P1, P2})

Clear trace and repeat for each in the following list

Using tracing ...

/2 and ping/1 functions take to
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dbg Extended

Handling trace messages manually; tracing to a file or port and
tracing in a multinode environment
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Distributed tracing
cluster can be traced with output going to one node

one@host two@host
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Distributed tracing
Start a tracer

dbg:tracer ()

one@host two@host
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Distributed tracing
Add nodes to the list of nodes to start traces on

dbg:n (Node)

one@host two@host
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Distributed tracing
When a trace starts it will start on all known nodes

dbg:p(Item, Flags)

one@host two@host
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Distributed tracing; Example

'~ net kernel:start([foo, shortnames]). '~ net kernel:start([bar, shortnames]).
{ok,<0.33.0>} {ok,<0.33.0>}

(foolPasha)”> dbg:tracer (). (barPasha)”> traceme:foo(node()).
{ok,<0.40.0>} ok

(foolPasha) 2> dbg:n(bar@Pasha) . (bar@Pasha) 3>

{ok,bar@Pasha}

(foolbasha) 4> dbg:p(all, c).

{ok, [ {matched,bar@Pasha, 34},

{matched, foo@Pasha, 35} ]}
(foolPasha) > dbg:tp(traceme, foo, []).
{ok, [ {matched,bar@Pasha,l},

{matched, foo@Pasha,1}]}
(fool@Pasha) 6>

(<6566.31.0>) call traceme:foo(bar@Pasha)
(foolPasha) 6> traceme:foo(node()) .

ok

(<0.31.0>) call traceme:foo (foo@Pasha)
(fool@Pasha) 7>
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Remember this?

roduction and Basics

A trace emits trace messages,
one process receives these messages

—
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Handling trace messages manually Suppose to
L/ represent a fun

r (process, {HandlerFun, Initi
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Handling trace messages manually; Example

> dbg:tracer (process, {fun(Trace, N) -> io:format ("TRACE (#~p): ~p~n", [N, Trace]), N+1
end, 0}).
{ok,<0.485.0>}
s > dbg:p(self (), [c]).
{ok, [ {matched, nonode@nohost,1}]}
> dbg:tp(traceme, foo, [1]).
{ok, [ {matched, nonode@nohost, 1}]}
> traceme:foo (1) .
TRACE (#0): {trace,<0.297.0>,call, {traceme,foo,[1]}}
ok
> traceme:foo (2).
TRACE (#1): {trace,<0.297.0>,call, {traceme, foo,[2]}}
Ok
> dbg:p(all,clear).
{ok, [ {matched, nonode@nohost,28}]}
> dbg:p(self (), [c, timestamp]).
{ok, [ {matched, nonode@nohost, 1}]}
> traceme:foo (10).
ok
TRACE (#2): {trace_ts,<0.297.0>,call, {traceme, foo,"\n"},{1289,139850,193370}}
>
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Trace messages; examples

{trace, Pid, 'receive', Msg}

{trace, Pid, send, Msg, To}
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Trace messages; with flag t imestamp:

ts, Pid, call, {M, F, A}, {MegaSec, Sec, MicroSec}}

with message in the match specification:
race, Pid, call, {M, F, Args}, Message}
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Trace output to a port

ol

dbg:tracer (port, PortGenerator)
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Trace output to a port: Socket

t (1ip, PortNumber| {PortNumber, QueueSize

ort for a client to connect
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Trace output to a port: Socket

client (ip, PortNumber|{Hostname, PortNumber})

ects to a port on a hostname
ave the same formats as tracing in
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Trace output to a port: Socket; example

> dbg:tracer (port, > dbg:trace client (ip, {"localhost"™, 9922}).

dbg:trace port(ip, 9922)). <0.53.0>
> (<0.33.0>) call traceme:foo (nonode@nohost)

{ok,<0.80.0>}
(<0.33.0>) call traceme:foo("Hello!'")

> dbg:p(all, c).

{ok, [{matched, nonode@nohost, 26}]}
> dbg:tp(traceme, foo, [1]).

{ok, [ {matched, nonode@nohost, 1}]}
> traceme:foo (node()) .

ok

> traceme:foo ("Hello!").

ok
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Trace output to a port: File

e port(file, Filename|WrapFileSpec)

o dump traces t
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Trace output to a port: File

race client(file|follow file, Filename)

the file Filename and prints the tracemessages
i 1e is used then the file will be
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Trace output to a port

race client( , , {HandlerFun, InitialState})
erFun = fun (TraceMsg, State) -> NewState

concept as when using tracer/2
is sent if the ip port is too conge
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Using tracing ...

number of erlang nodes and trace something you previously
ut from all nodes simultaneously
ustom handler to print the messages you get differently from

ing timestamp and/or message in your match speC| '
ler that measures the avara
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Getting started again
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What we know so far ...

 Start a trace with different flags (calls, messages etc)
e Match Specifications to refine call traces
nect several nodes into a trace

e from a client
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Building distributed system tracing
Some examples:

ce a specific action of the system (E.g. a session/messa
de system sampling (E.g. How many refill their
than £5 per day/hour/secon
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ttb basics

e Starts one file port tracer on several nodes at the same time
tarts one or more traces on these nodes

hen tracing is stopped the files are aggregated on the node
arted the tracing

at function is used to format each entry which can t
itten to a file (or whatever we want E.g. wri
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ttb usage

1. Start a tracer on a set of nodes
2. Start a trace (and trace patterns if tracing calls)
3. Stop the trace (automatic aggregation)
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Start a tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

Format the output

BRI AT’ =

ttb:tracer (Nodes, Options)

he first parameter Nodes is a list of nodes where the tracer will
rted
S {ok, NNodes} where NNodes is a list of nodes where th
ers were started

is a list of key-value tuples. The co
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ttb:tracer (Nodes, Options)

(foo@Pasha) 1> ttb:tracer ([foo@Pasha, bar@Pasha]l, [{file,"MyTraceFile"}]).
{ok, [bar@Pasha, foo@Pasha]}
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Starta tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

E t the output

= SO ISy

ttb:p (Procs, Flags)

ame functionality as dbg:p/2

is a list of process identifiers (or a single item)
istered | atom() | pid() | all | new |

ed processes are identified by each nod
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Start/a tracer on a set of nodes

ttbh:tpltpl|ctplctpl/2, 3,4

me functionality as the dbg functions
return value
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ttb:p (Procs, Flags)

(foo@Pasha) 2> ttb:p(all, [c]).
{ok, [{all, [{matched,bar@Pasha, 36}, {matched, fooR@Pasha,37}]}]}

(foo@Pasha) 3> ttb:tp(traceme, foo, []).
{ok, [ {matched, bar@Pasha, 1}, {matched, foo@Pasha,1}]}

(foo@Pasha) 4> traceme:foo (node()) .
ok

(bar@Pasha) 1> traceme:foo (node()) .
ok
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Starta tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

E t the output

= Oy

ttb:stop (Options)

tops the tracing
ions is a list of one of two items; fetch and format

implies fetch

ieves the files from the remote no
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ttb:stop (Options)

(foo@Pasha) 5> ttb:stop([format]) .
Stored logs in e:/Desktop/EUC-=Tutorial/ttb-test/ttb upload-YYYYMMDD-HHNNSS
<5700.37.0>, {erlang, apply,2},bar@Pas call traceme:foo (bar@Pasha)
({<0.37.0>, {erlang,apRly,2},foo@Pasha}) call traceme:foo (foo@Pasha)
stopped
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Starta tracer on a set of nodes
Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

1.
2.
3.
4,

ttb:format (File, Options)

ormats a file, list of files or a directory
ptions are given this print the trace to stdout
can be

andard io|Filename} — Specifi
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Starta tracer on a set of nodes

Start a trace (and trace patterns if tracing calls)
Stop the trace (automatic aggregation)

Format the output

2 99 ISEay

ormat (..., [{handler, {HandlerFun, ...}}])

fun of arity 4: fun (Fd, Trace, TraceInfo, State)

he file descriptor to the file the out option specified or
rd io

The trace message according to given fla
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Start/a tracer on a set of nodes

HandlerFun

ok

fun (Fd,
io:
io:
io:
io:

(foolPasha) 6> ttb:format ("ttb upload-20101113-202517",
{HandlerFun,

ttb:format (File, Options)

Trace, TraceInfo, ) ->

format (Fd, "= TracelInfo:",[]1),
format (Fd, "~1000p~n", [TraceInfo]),
format (Fd, "= Trace ", 00,
format (Fd, "~1000p~n~n", [Trace])

[{out, "mytrace.log"}, {handler,

ok}}]).
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Starta tracer on a set of nodes
Start a trace (and trace patterns if tracing calls)
trace (automatic aggregation)

ttb:format (File, Options)

= TracelInfo:[{flags, [{[all], [calll}]l}, {file, ["./bar@Pasha-MyTraceFile"]}, {node, [bar@Pashal}]
= Trace :{trace, {<5700.37.0>, {erlang,apply,2},bar@Pasha},call, {traceme, foo, [bar@Pashal]}}

= TracelInfo:[{flags, [{[all], [calll}]l},{file, ["./bar@Pasha-MyTraceFile"]}, {node, [bar@Pashal}]
= Trace :end of trace

= TracelInfo:[{flags, [{[all], [calll}]l},{file, ["./foo@Pasha-MyTraceFile"]}, {node, [fool@Pashal}]
= Trace :{trace, {<0.37.0>, {erlang, apply,2},foo@Pasha},call, {traceme, foo, [foolPasha]}}

= TracelInfo:[{flags, [{[all], [calll}]l},{file, ["./foo@Pasha-MyTraceFile"]}, {node, [foolPashal}]
= Trace :end of trace
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Start/a tracer on a set of nodes
Start a trace (and trace patterns if tracing calls)

ttb:write trace info(Key, Info)

dds a {Key, Info} tuple tothe TraceInfoelement
| to "save" enviornment information with the trac
lled on the node that started the t
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Using the trace tool builder ...

e trace tool builder to run traces you previously used dbg for
a module with a simple interface that takes a module, function and
aces that for a given number of seconds and then turns the trace
ats the results to a file

Hardcore:



Sl
Where to go from

here ...

What | didn't include




Vhere to go from here ...

Look into ...







